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Abstract-For laminar flow between a flat conduit exact solutions of the problem of steady-state 
diffusion and convection are presented for constant wall concentration, constant flux across the wall 
and a heterogeneous chemical reaction of the first order. The initial conditions were considered to be 
arbitrary functions of the coordinate across the channel. The same was performed for the cases of 
simultaneous diffusion, convection and homogeneous chemical reaction for constant wall concentration 
and heterogeneous chemical reaction. The eigenvalues are presented in tables and the eigenfunctions are 

presented in analytical form, which contains the confluent hypergeometric function. 

NOMENCLATURE 

width of channel; 
concentration, c, wall concentration, Ci 

initial concentration, co concentration 
outside the duct, Z mean concentration 
across the channel; 
diffusion coefficient; 

= g, DamkGhler number; 

constant flux across the channel wall; 
confluent hypergeometric function; 
heterogeneous chemical reaction coefficient; 
homogeneous chemical reaction coefficient; 
pressure of liquid; 
= ReSc, P&let number; 

2u,,b 
= 3v, Reynolds number; 

= i, Schmidt number; 

maximum flow velocity in the channel 
(at y = 0); 
axial coordinate; 
coordinate perpendicular to channel axis; 

=y ;. 
i 

eigenvalues; 
gamma function; 
incomplete gamma function; 
dynamic viscosity of liquid; 
proportionality factor; 
Y-function. 

1. INTRODUCTION 

THE PROBLEM of steady state diffusion and convection 
in a straight channel has been treated previously for 
certain boundary conditions. Mathematically it rep 
resents nothing but the problem of forced heat con- 
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vection in laminar flow assuming the Poiseuille flow 
velocity profile [l-3]. During the course of the analysis 
the partial differential equation has been transformed 
into an ordinary differential equation describing the 
concentration in the direction normal to the channel. 
The solution of this ordinary differential equation and 
the eigenvalues have been obtained numerically. Only 
the lower eigenvalues were given, until less than twenty 
years ago [4] asymptotic values were obtained for 
higher modes. 

The purpose of this paper is to present the exact 
solution of the problem of steady state diffusion and 
convection with various boundary conditions, includ- 
ing the problem of a heterogeneous chemical reaction 
of the first order, as well as the problem of simul- 
taneous diffusion, convection and chemical reaction. 
All eigenvalues may be easily and expediently ob- 
,tained from the confluent hypergeometric function. In 
addition the orthogonality relations for the various 
cases are presented. With these the determination of 
the remaining integration constants may be performed 
even for arbitrarily given initial conditions exhibiting 
a function of the normal coordinate as their initial 
concentration distribution at the tube inlet. 

2. BASIC EQUATIONS AND SOLUTION 

For the determination of the local concentration of 
a component in a moving liquid between two parallel 

plates with a fully developed velocity profile, where 
molecular diffusion in axial direction is neglected, the 
second order differential equation (Fig. 1) 

has to be solved. The width of the channel is b and 

ap b2 

““=-=G 

is the maximum velocity of the liquid. With the sub- 
stitution y* = y/(6/2) this yields 

!p!!?&y*Z,~_!gc = 0. (1’) 
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FIG. 1, Geometry of the system 

This problem encounters the absorption of a substance 
by another through which it can diffuse convectively 
and molecularly and with which it can react chemically. 
It is assumed here, that the diffusing substance is 
immobilized by an irreversible first order reaction. If 
there is no simultaneous homogeneous chemical re- 
action the homogeneous chemical reaction coefficient 
k* vanishes. 

The problem has to be solved with the boundary 

condition 

SA*=Bc+C at !‘*=*I 
?y* 

(2) 

which contains the cases of 
(a) constant surface concentration, i.e. A = 0, B = 1, 

c= -cw 
(b) heterogeneous chemical reaction of the first 

order, i.e. A = D, B = kb/2, C = 0 

(c) evaporation, i.e. A = D. B = ?b/2, 

C = -@‘b/2). co 

(d) constant flux across the wall. i.e. A = D, B = 0, 

C = fob/2. 

If a chemical reaction takes place in the surface of the 

channel wall, we talk then about a heterogeneous 
chemical reaction, in addition to the homogeneous 

chemical reaction. The value kb/2D = Du is called the 
Damkiihler number. Assuming 

(‘= c,(J’*)+cz(x,J.*) 

the partial differential equation (1’) yields 

d2c, k*b2 
-----c, = 0 
dye2 40 

with 

TA$=Bcl+C at y*=kl 

(3) 

and 

with 

The solution of equation (3) yields 

(‘1 = 

-i~coshlq(%)i]+Af!%)isinh[P(~~]~’(5) 

With c2 = ce-‘* equation (4) exhibits with p2 = 

(u. bZc(/4D) [S] the solution 

c=Ae 2 -~~*~1F,jh(l-~+~),~;P7*2) (6) 

where 1F1 represents the confluent hypergeometric 

series 

Zc I-(?)I-(cc + l)z” 
1Fl(Ky;z)= 1 

;,=o I-(a)T(y+L)J! 

The boundary condition for c2 yields the equation for 
the determination of the eigenvalues /?” : 

B=;(l+p+~)-+I+%) 

,F’(+-B+~jA;8> 
x ,+(I-B+~).f$) (7) 

These eigenvalues /?,, are presented for constant surface 
concentration, for heterogeneous chemical reaction and 
evaporation, and for constant flux (k* = O-case) in 
Tables l-3. The solution of the problem is then given 
by the expression 

Ccosh[;@$*] 

(‘= -~cosh[p(%)‘]+Ap~~sinh[~(~~]} 

+zl n.e-l;I’*‘.,r,(~(l-p.+~),:;8.y”) 

4lJfD 

x e iroh’ x 
(8) 

The constants A,, are obtained from the initial condition 
at the inlet x = 0, which reads ~(0, y*) = Ci(y*) and 
results for c2 in 

With the abbreviation 

Qy*) = e ~~I”.~~~~~(I-P.+~),~;A,‘i) (10) 

which satisfies the differential equation 

d2c 
by*2+ 

1 
zi = 0 
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Table 1. &,-values for constant wall concentration 

n 0 0.1 

40 

1.0 10 too 

1 
2 
3 
4 

: 
7 
8 
9 

10 

I .680706 1.705408 1.973668 3.753472 10.5 17979 
5.668724 5.677812 5.777087 6.804868 12.807847 
9.667103 9.667210 9.731214 10.417786 15.480656 

13.666522 13.667353 13.711603 14.217085 18.474449 

11.666236 17.667500 17.700241 18.100188 21.716535’ 
21.666069 21.668438 21.692764 22.026755 25.147685 
25.665961 25.669741 25.687459 25.974962 28.701792 
29.665886 29.669244 29.683496 29.936296 32.364750 
33.665832 33.668869 33.680420 33.906250 36.085944 
37.665791 37.668575 37.677963 37.882206 39.85 1775 

Table 2(a). /&values for various Damkohler-numbers and ki$-vahres 

n 0.1 
- 

1 0.374941 
2 4.332076 
3 8.327079 
4 12.328510 
5 16.328308 
6 20.328448 
7 24.328478 
8 28.328517 
9 32.328542 

10 36.328563 
11 40.328580 
12 44.328594 
13 48.328605 
14 52.328615 
15 56.328624 
16 60.32863 1 
17 64.328637 
18 68.328643 

- 
1.0 10 

- - 

1 .ooc@oo 1.550312 
4.654545 5.397629 
8.542446 9.293999 

12.498990 13.217682 
16.472651 17.151799 
20.454484 21.108539 
24.440997 25.066797 
28.430519 29.030707 
32.422099 32.999038 
36.415158 36.970926 
40.4093 18 40.945737 
44.404324 44.922990 
48.399996 48.902310 
52.396200 52.883399 
56.392840 56.866021 
60.389841 60.849977 
64.387143 64.835107 
68.384702 68.82 1127 

100 
- 

I .666035 
5.636888 
9.613329 

13.603544 
11.592962 
21.583684 
25.574979 
29.566814 
33.559075 
37.551700 
41.544639 
45.537853 
49.531312 
53.524989 
57.518866 
61.512923 
65.507147 
69.501523 

k*b= 
p-0 
4D 

Table 2(b). &-values for various Damkohler-numbers and g-values 

DU 

n 

f 
2 
3 
4 
5 
6 

7 
8 
9 

10 

0.1 
._. 

0.535742 
4.354768 
8.327215 

12.320443 
16.318533 
20.317606 

24.317032 
28.316629 
32.316329 
36.316096 

1.0 10 100 
--~-~ _~___ .--~_ 

1.062995 I .588564 1.701239 
4.675074 5.411420 5.649568 
8.556917 9.308817 9.627288 

12.516351 13.234488 13.615060 
16.488570 17.172599 17.603504 k*b2 
20.469858 21.121587 21.593502 

<jy = 0.1 

24.455803 25.078521 25.584289 
28.4449 17 29.041443 29.575743 
32.436162 33.009016 33.567708 
36.428949 36.980305 37.560097 

1 
2 
3 
4 

z 
7 
8 
9 

10 

1.260792 1.524110 1.891290 I .979940 
4.555467 4.851578 5.536855 5.763207 
8.437837 8.661265 9.375170 9.681909 

12.408832 12.576553 13.277000 13.650642 
16.391302 16.533770 17.206441 t 7.627249 
20.380700 20.504780 21.150324 2 1.609643 
24.373283 24.483994 25.103766 25.595218 
28.367904 28.468167 29.064093 29.582809 
32.363802 32.455677 33.029653 33.571799 
36.360577 36.445530 36.999332 37.561820 
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n 0.1 1.0 10 100 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-.-____- 

3.634360 
6.164637 
9.458632 

13.123793 
16.920771 
20.808017 
24.733057 
28.678850 
32.637726 
36.605433 

3.662817 3.728017 
6.302725 6.650157 
9.623018 10.144622 

13.268780 13.853489 
17.071151 17.670843 
20.947287 21.544618 
24.850416 25.447850 
28.779554 29.364876 
32.726025 33.295308 
36.684193 37.236902 

____-- 

3.751998 
6.786674 

10.382907 
14.169056 
18.041197 
21.957940 
25.897039 
29.849860 
33.811783 
37.780114 

1 10.512867 10.512884 10.512967 10.513046 
2 12.803990 12.804609 12.807572 12.810292 
3 15.440815 15.444667 15.462683 15.478601 
4 18.349319 18.361220 18.416132 18.463462 
5 21.475687 21.499196 21.607042 21.698263 
6 24.758169 24.796645 24.976323 25.124777 
7 28.191912 28.239946 28.467537 28.662403 
8 31.719559 31.776408 32.056028 32.308009 
9 35.345068 35.407249 35.726379 36.029106 

10 39.045408 39.109924 39.455769 39.790099 

k*h= 
Table 2(c). ,8,-values for various DamkGhler-numbers and z-values 

k*b2 
__ = 10 
40 

!$,,I) 

we obtain the orthogonality relation 

s 

1 
(1 -y*ZEnb*)C(y*)dy* 

0 

I 
0 for mf n 

1 dC, ae, 

[ 1 for constant _ _._ 
2/$ a/S. LIy* Y*Cl wall concentration 

a2c 
c*,-” 1 wag, ye=l 

all other cases 

for m = n. 

The value for m = n was obtained from an indeter- 
minate expression by applying the rule of l’Hospita1. 

The values 

may be obtained from (10) and the confluent hyper- 
geometric function. They are given by [6] : 

Table 3. &values for 
constant flux across the 

walls (k* = 0) 

n 8. 

1 4.286418 
2 8.303518 
3 12.291126 
4 16.297552 
5 20.299898 
6 24.301932 
7 28.303424 
8 32.304607 
9 36.305567 

10 40.306364 
11 44.307038 
12 48.307617 
13 52.308121 
14 56.308564 
15 60.308957 
16 64.309308 
17 68.309624 
18 72.309911 
19 76.310172 
20 80.310410 

and 
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From the initial condition (9) the constants A, may be determined by the expression 

6= 
0 for constant wall concentration 

1 for all other cases. 

If Q is constant the first part of the integrai may be evaluated and yields 

s 1 J&,2 r1 

0 

(1 _y*2)cBb*)dy* = 4oB2 J 
cm 

n 0 
G(y*)dy* -7’ 

” 
(13) 

For the determination of the remaining integral and 
that of equation (12) we refer to the appendix. 

If at the inlet x = 0 the initial condition ci is a 
constant value, the integration constants are with (It) 
given by 

A,=- - 
2Ci 

8, $$+&$$- L n 1 It y*=1 

for heterogeneous chemical reaction and k* = 0. 

3. CONSTANT FLUX ACROSS THE WALL 

The case of just diffusion and convection with a 
constant rate of diffusing material across the boundary 

-=IjZf”b dc 

dy* 2D 
at y+=+l 

needs special treatment. For the solution of the 
differential equation (1’) with k* = 0, we assume 
c = ci +c2, where cl and c2 have to satisfy (1’) with 
the boundary condition 

ac1 - fob 
dy*= +20 and CT2 = 0 for y* = & 1 

iYy* 
(14) 

respectively. With 

Cl = Bx+f*Ot*) 

and ci = constant we obtain 

3fo z? E-J*2 +*4-#] Cl = Ci-&X- 8. (15) 

The concentration c2 is given by the series expression 
with k* = 0: 

cz(x, y*) = jj A,e-ti.i* rFr(&(l -fi.),$;&y*“) 
n=l 

4BD 

x e uoh’ . (16) 

The integration constants A, are obtained from the 
initial condition, with the orthogonality relation 
(Q 1) = 0) 

[O form$:n 

s 1 

(1 -r*‘)&(y*)C(y*)dy* = 
0 

_%$!$.(l) 

t form = n. (17) 
Thus 2, is with the initial condition for the concen- 
tration c2 at the inlet x = 0 

C2(0,y*)=g[y*2-By*4-+$] (18) 

obtained from 
_ 
A, = 

Pl 

3faif& 1 - (1-y*2)[y*2-&y*4-#J~~(y*)dy* 
Jo _ 

4LE”,fl) .~(l) 

which yields 

(19) 

4. REMARKS 

In the previous treatment we have neglected the 
molecular diffusion in axial direction. This, however, 
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is not always permitted. Without this neglection the which yields 
process would be described by the differential equation 

d2c 
CJ~C h2 S2c uobZ (1~. k*b2 

-_Irob2q*IC=0 

--+4~-40(1-y*~)~-~~~Dc = 0. 
dt~*~ 20 6.x 

ay*2 c 

In the usual way the substitution c = ce-‘* shall 
in the case of diffusion and convection, and 

reduce the above equation to the ordinary differential c?‘c Mob2 dc k*b2 

equation &/*2 
__zD~**-qDc=O 

CX 

d2c in the case of simultaneous diffusion, convection and 
dy*2+ P2(l -Y*2)+ chemical reaction. By proper transformation these 

The solution of this equation is 
differential equations may be solved, as indicated by 
Levich [7] for the first equation. For the solution of 

B *: 
c = e- 1’ IF1 : 1-p--- 

i! 

the second differential equation a Laplace-Transform- 

technique may be applied. 

Table 4. &values for various P&let-numbers (for constant wall concentration) 

Pe 

n 1 10 100 1000 x 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.977152 1.636176 1.680206 1.680702 1.680706 
1.828636 4.574453 5.645687 5.668488 5.668724 
2.387047 6.563249 9.549618 9.665858 9.667103 
2.838052 8.120181 13.337954 13.662894 13.666523 
3.227349 9.436836 16.979712 17.658252 17.666236 
3.571120 10.599105 20.458014 21.651175 21.666607 
3.887497 11.647333 23.770739 25.641056 25.665961 
4.178400 12.612735 26.922088 29.627370 29.665886 
4.452324 13.509006 29.921406 33.609669 33.665832 
4.713051 14.351016 32.780426 37.586289 37.665791 

From this one may conclude immediately, that the 
above solutions tend into those of the previous section, 
if 

4D2P2 ~~ 1 

b2u2 0 

is satisfied. This means that the P&let number 
Pe = ReSc >> 1. Only for such cases the molecular 
diffusion in axial direction may be neglected. It may, 

however, be mentioned that the functions are not 
orthogonal. 

To show just the difference of the eigenvalues & for 
the classical Graetz-problem, the equation for the deter- 
mination of the eigenvalues 8. with Re = (2uo b/3v) 

has beenevaluated for various Pkclet numbers (Table4). 
It may also be noted that the representation of the 

results in the immediate vicinity of the inlet x = 0 
requires a large number of eigenvalues and eigen- 
functions. This could be achieved with some increased 
numerical effort with the above solution. Another 
method could as’well be adopted by noting that near 
x = 0 the concentration change takes place very closely 
to the wall in the extremely thin diffusion layer. This 
suggests immediately the transformation of the govern- 
ing differential equation to the wall by 

q=i-y or u* = 1-y* 

5. MEAN CONCENTRATION AND CONCENTRATION 

AT THE WALL 

The concentration at the walls may be easily obtained 
from the previous results by merely introducing in the 
solutions presented in Sections 2 and 3 the value 
y* = k 1 (y = + b/2). For constant flux across the walls 
the wall-concentration yields 

3fo 17fob 
C,= Ci-~X-~ 

For simultaneous diffusion, convection and chemical 
reaction one finds at the walls 

where the values A, B, C have to be introduced appro- 
priately for the various cases. 

The mean concentration over the cross section of 
the channel is given by (U = iuo) 

2 

s 

b/2 

1 

1 
F=- 

bii 0 
U(Y)C(X, y)dy = 3 (1 - Y*~)c(x, y*)dy* (22) 

0 

which is only a function of the axial coordinate x. 
Introducing the previous results and applying the 
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appropriate boundary conditions and orthogonality 
relations yields : 

3fo 
2 = ci -- x 

buo 
for constant flux across the walls 

and k* = 0 (23) 

and 

(24) 

for all other cases. 

s 

1 

The integral cJy*)dy* is presented in the Appendix. 
0 

REFERENCES 

1. L. Graetz, Faber die Warmeleitungsfahigkeit von Fliissig- 
keiten, Ann. Phys. 18, 79-94 (1883); 25, 337-357 (1885). 

2. W. Nusselt, Abhlngigkeit der Warmetibergangszahl von 
der Rohrllnge, Z. Fer. D. Ing. 54, 1154-1158 (1910). 

3. M. Jakob, Heat Transfer, Vol. 1. John Wiley, New York 
(1949). 

4. J. R. Sellars, M. Tribus and J. S. Klein, Heat transfer 
to laminar flow in a round tube or flat conduit-the 
Graetz problem extended, Trans. Am. Sot. Mech. Engrs 
78,441 (1956). 

5. J. Pahor and K. Strand, A note on heat transfer in 
laminar flow through a gap, Appl. Scient. Res. AlO, 81-84 
(1961). 

6. E. Jahnke, F. Emde and F. Losch, Tafeln hijherer 
Funktionen. B. G. Teubner, Stuttgart (1960). 

7. V. G. Levich, Physicochemical Hydrodynamics. Prentice 
Hall, Englewood Cliffs, NJ (1962). 

APPENDIX 

For the determination of the integration constants of the 
previous sections various integrals appear, which have to 
be evaluated. They are of the form 

J = s ; f(y*My*)dy* 

wheref(y*) = 1; y**“; y**‘“” or combinations of those. It 
is therefore [6] 

s 1 

.l1= Gb*Vy* 
0 

s i e-$Y*’ f r(G(.+11)2*~j% y*2”dy* 

0 i=i ~(a,KW! 

which may be reduced with the transformation 

p.y** = z 

The integral is presented by 

where y represents the incomplete gamma-function, which 
may be represented in series form as [6] 

(_1)“fi;+“+l’2 

vv.+:,:P.) = \,fO “!2’+“+l/2(v+~+f) 

The integral is therefore given by 

J1 = .f l-(a.+1)2 21-I g (_1)‘8;+” 

i =o Ua,KQ)! v=02’v!(v+l+t)‘ 

The following integrals may be obtained in a similar way. 
They are given by the expressions: 

Jz = 
s 

’ y*2mC,(y*)dy* 
II 
m r(a.+2)22-~ m c c 

(-I)‘/$;+” 

i=. r(a.)(24! ,,=ov!2y~+v+m+:) 

s 1 

J3 = ytzmflc,(y*)dy* 
0 

= f r(a.+%)22”-1 f (-i)‘p:+” 

i. = 0 r(a,)(21r)! ,=02”v!(v+1+m+1) 

All appearing integrals in the text may be determined with 
these results. It is furthermore 

s 1 

0 

(l-y**)cosh[;(;)iy*]Cn(y*)dy* 

xf (-l)“bi’” 

1 ,~=02'v!(v+i+m+$)(v+m+~+3) . 
DIFFUSION, CONVECTION ET REACTION CHIMIQUE DANS UN CANAL 

Resume-On presente des solutions exactes du problemme de diffusion et de convection stationnaires en 
ecoulement laminaire dans un canal plat, pour une concentration constante a la paroi, un flux parietal 
constant et une reaction chimique hettrogene du premier ordre. Les conditions initiales sont supposes 
fonctions arbitraires de la coordonnee transversale dans le canal. On a traite de m&me les cas dune 
diffusion et convection avec reaction chimique homogene pour une concentration de paroi constante et 
une reaction chimique h&rogine. Les valeurs propres sont present&s dans des tables et les fonctions 

propres sont don&es sous forme analytique, a l’aide de la fonction hypergeomitrique confluente. 

DIFFUSION, KONVEKTION UND CHEMISCHE REAKTION IN EINEM KANAL 

Zusammenfassnng-Fur laminare Striimung in einem flachen Kanal wurden exakte Liisungen des 
Problems der stationaren Diffusion und Konvektion angegeben bei konstanter Wandkonzentration, 
konstantem Warmestrom an der Wand und heterogener chemischer Reaktion von erster Ordnung. Die 
Anfangsbedingungen wurden als beliebige Funktionen der Kanalkoordinaten angesehen. 

HMT Vol. 19. No. 5-C 
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Dasselbe Vorgehen erfolgte fiir den Fall gleichzeitiger Diffusion, Konvektion und homogener chemischer 
Reaktion bei konstanter Wandkonzentration und heterogener chemischer Reaktion. Eigenwerte wurden 
in Tabellen angegeben und Eigenfunktionen in analytischer Form, die die konfluente hypergeometrische 

Funktion enthieften. 

,4EI@QY3MR, KOHBEKIJMJI M XMMHYECKAII PEAKLJIJR B KAHAJIE 

MoTaqm- IIonyYeHbI rowbIe peurewfl 3aAaw ycTawowBmePca A1@@y3uii li KOHB~KW~H Ann 

rpawwblx yuxo~ai4 ROCT~IIHH~~~ KoHUeHTpauau Ha cTeHxe,nOcT0n~~0r0 noToKa w reTeporeHwoi 

XHMHWZCKOfi ~aKLGi&i IlepBOrO UOpnAKanpanaMuHapHOMTe~eHUUBnAOCKOMKaHaAe.~~AROAa- 

~~eTCR,YTOHa~~bHb~eyC~OB~~IlBA~MTC~~~O~3BO~bHbIM~~yHKUUIIMU~O~e~~HOii KOOpAWHaTbI. 

SK XCe yCJIOB%iR ~PKHKMa~TC~ AJlX CJTyYaeB COBMeCTHO& AU~y3~~, KOHBeKUHH 54 ~OMOfewHOZt 

XKMWleCKOti peaKUH&i IIplr IlOCTO5iHHO2i KOHQeHTpaUHIS Ha CTeHKe K reTepOreHHOk XWMR'ieCKOB 

peaKUuH. CO6CTfIeHHbIe 3Ha'ieHHll 3aTa6yJUfpOBaHb1, a CO6CTBeHHble (PyHKLWi IlpeACTaBJleHbl 

BHWIHTKYeCKKB BKAe CXOASUIWfiCR rEilIepreOMeTpIiYeCKOi8 C)yHKIW. 


